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Abstract

The paper deals with a novel computational formulation for the analysis of viscous flows past a solid body. The

formulation is based upon a convenient decomposition of the flow field into potential and rotational velocity

contributions, which has the distinguishing feature that the rotational velocity vanishes in much of, if not all, the region

in which the vorticity is negligible. Contrary to related formulations implemented by the authors in the past, in the

proposed approach, discontinuities of the potential and rotational velocity fields across a prescribed surface emanating

from the trailing edge (such as the wake mid-surface) are eliminated, thereby facilitating numerical implementations.

However, the main novelty is related to the application of the boundary condition: first, the expression for the velocity

used for the condition on the body boundary is consistent with that for the velocity in the field; also—contrary to

related formulations used by the authors in the past—in the proposed approach, the condition on the body boundary

does not require the evaluation of the total vorticity (inside and outside the computational domain). The proposed

algorithm, valid for three-dimensional compressible flows, is validated—as a first step—for the case of two-dimensional

incompressible flows. Specifically, numerical results are presented for the aerodynamic analysis of two-dimensional

incompressible viscous flows past a circular cylinder and past a Joukowski airfoil. In order to verify the desirable

absence of artificial damping, we present also results pertaining to the flutter (i.e., dynamic aeroelastic) analysis of a

spring-mounted circular cylinder in a viscous flow, free to move in a direction orthogonal to the unperturbed flow. In

both cases (aerodynamics and aeroelasticity), the results are in good agreement with existing literature data.

r 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper presents a novel computational methodology for the analysis of viscous flows, based upon an exact

decomposition of the velocity field into an irrotational and a rotational contribution. The methodology is particularly

advantageous for exterior flows (e.g., flows around wings). Hence, this is the only case addressed here, although the

concepts are applicable to interior flows as well. The numerical results presented here are limited to the case of two-

dimensional incompressible viscous flows. Thus, only the corresponding formulation is presented in detail.
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However, for the sake of completeness, the theoretical formulation, valid for unsteady three-dimensional compressible

viscous flows, is outlined in Appendix A, primarily as a motivation for introducing the methodology and to present the

full potentiality and the ultimate objective of the work.

The main driver of this work is the consideration that—as well known—the analysis of high-Reynolds-number

attached flows around streamlined bodies is considerably simplified if the flow field may be assumed to be primarily

irrotational. Indeed, it is well known that—at least for incompressible and subsonic flows—the potential-flow problem

may be solved quite efficiently by boundary-element methods, in particular, by the approach introduced by Morino

(1974) and reviewed in Morino and Tseng (1990), Morino and Gennaretti (1992), and Morino (2003). In order to retain

such an efficiency, the case of attached high-Reynolds-number flows is typically studied simply by modifying the

potential-flow analysis by including a viscous-flow correction. This is usually accomplished by using either one of

the two well known methods, introduced by Lighthill (1958) for three-dimensional incompressible flows: (i) the

displacement-thickness method, or (ii) the equivalent-source method (now commonly known as the transpiration-

velocity method, see Lemmerman and Sonnad (1979), who extended the technique to three-dimensional steady

compressible flows). However, the Lighthill approaches (very useful to evaluate the correction to potential-flow results

due to the presence of the boundary layer and indeed widely used in practical applications) are limited by the standard

boundary-layer assumption (that is, small thickness of the rotational region).

In order to overcome this limitation (for instance, to study the Navier–Stokes equations for separated flows), one

may use formulations in non-primitive variables (that is, vorticity based), which are not limited by the boundary-layer

approximation. In this approach, the flow field is divided into two regions: (i) the irrotational region (defined here as the

region where the vorticity is negligible), and (ii) its complement, the vortical region. The primary advantage of the non-

primitive-variable approach over the computational solution of the Navier–Stokes equations in primitive variables (i.e.,

velocity and pressure) is the fact that, for exterior flows, the computational domain for the former (that is, the vortical

region) is typically much smaller when compared to that for the latter (that is, the entire fluid volume). Indeed, this is

the primary reason why we believe that vorticity-based formulations are particularly interesting for exterior flows.

Any formulation in non-primitive variables is based upon a general class of potential/vorticity decompositions of the

type

v ¼ rjþ w, (1)

where w is any particular solution of the equation

r � w ¼ f, (2)

with f:¼r � v denoting the vorticity field.1 Eq. (1) states that the flow field may be decomposed into two contributions,

one related to the vorticity (called the vortical velocity), the other being irrotational (called the potential velocity).

The class of potential/vorticity decompositions is very broad and includes, in particular, the Helmholtz

decomposition, for which the vortical velocity contribution, w, is the curl of a vector field, w, the so-called vector

potential [see, e.g., Serrin (1959)]. As pointed out by Morino (1990), the problem with such a decomposition—in

applications to unsteady viscous compressible flows—is that both the scalar potential and the vector potential are

governed by the Poisson equation, and not by the wave equation as one might expect for unsteady compressible flows:

thus, the physical phenomenon of sound propagation is completely hidden by the mathematical representation

provided by the Helmholtz decomposition. Specifically, the vector-potential contribution is solenoidal and, therefore,

has an infinite speed of propagation. The implication is that the vector-potential contribution does not vanish in the

irrotational region. Hence, in such a region, the scalar-potential contribution includes a term equal and opposite to the

vector-potential contribution, all through the term Y:¼r � v. As a consequence, the source terms in the equation for

the scalar-potential (see Eq. (A.2)) are different from zero in a rather large region, thereby causing a deterioration in the

efficiency of the method. In physical terms, in the Helmholtz decomposition the vortical-velocity representation implies

that a change in the vorticity distribution causes an instantaneous change of the vortical velocity throughout the flow

field. Thus, the potential velocity has to perform a double work: first, subtract the contribution of the vortical

contribution and then add the finite-speed propagation of the disturbance—all of this, by using the Poisson equation

and not the wave equation!

In order to avoid this problem, it is desirable to have a decomposition in which the rotational velocity, w—and hence

the source term, Y ¼ �r � w, see Eq. (14)—vanishes in much of the irrotational region. Indeed, the potential velocity

may be obtained by boundary-element methods, which retain their efficiency even in the presence of source terms in the

flow field, provided that these terms are limited to a relatively small field region. This fact is the key to the relevance of
1Eq. (2) must necessarily be satisfied, as it is seen by taking the curl of Eq. (1). On the other hand, Eq. (2) is also a sufficient

condition: for, it is apparent that v� w is irrotational, and hence potential, thereby proving the validity of Eq. (1).
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the proposed formulation. As a key by-product, we have that for compressible flows the potential velocity represents

explicitly the propagation mechanism of the vorticity-generated sound (see Appendix A).
2. Problems in past related work

A decomposition having w ¼ 0 in much of, if not all, the irrotational region is used here. In order to put the paper in

the proper perspective, the past work of the authors and their collaborators is critically reviewed here (and examined in

detail in Section 3), so as to provide the motivation for the present work, by identifying the preceding limitations that

are being overcome here. The distinguishing feature of the various approaches used in all these works (including the

present one) is the fact that w is obtained by direct integration of Eq. (2), as explicitly indicated in Eq. (A.4). This in turn

requires using a suitable direction of integration (as discussed below); the difference between different approaches

introduced in the past consists of the direction of integration utilized.

In the following, as stated above, we limit ourselves to two-dimensional flows (the three-dimensional ones being

addressed in Appendix A). Thus, in order to discuss the different approaches, we have to specify the coordinate system

used. In the case of two-dimensional steady viscous flows around an object, the vortical region (boundary layer and

wake) has a limited extent (a few chord lengths in the case of an airfoil). On the contrary, in the case of unsteady viscous

flows, the vorticity extends considerably beyond the object. Hence, for the computational analysis of unsteady flows, it

is convenient to use a curvilinear coordinate system elongated in the direction of the flow, that is, a C-grid. Specifically,

consider a line LW which starts from the trailing edge and extends to infinity. It is convenient that LW be directed—

more or less—like the flow; thus, LW is close to the middle of the wake and it will be referred to as the wake mid-line

(even though, strictly speaking, this may be only approximately true). Next, we introduce a body-fitted system of

curvilinear coordinates x and Z, with

x ¼ xðx; ZÞ, (3)

such that the line Z ¼ 0 coincides with the union of the body contour CB with the two sides of the wake mid-line LW

(whereas kxk ! 1, as Z!1).

Related formulations presented in the past may be divided into two groups. In the first group [introduced by Morino

and Beauchamp (1988) and Beauchamp (1990) for two-dimensional incompressible flows, and extended to three-

dimensional compressible flows in Morino (1990)], the integration is in the x-direction (that is, approximately in the

direction of the flow). Here, it will be referred to as Scheme A. In the second group [introduced by Morino et al. (1999)

and implemented by Arsuffi et al. (2001) and Morino et al. (2003) for two-dimensional incompressible flows], the

integration is in the Z-direction (that is, along the normal to the body boundary and to the wake mid-line). Here, it will

be referred to as Scheme B. As shown in Morino et al. (1999), the formulation resulting from this second approach is

closely related to the classical coupling of potential and boundary-layer flows, through the Lighthill (1958)

transpiration-velocity approach.

As pointed out in detail in Section 3.2, both Scheme A and Scheme B yield, across the wake mid-line, equal and

opposite discontinuities in the two contributions (potential and vortical) of the velocity, thereby rendering the

numerical application of both formulations quite cumbersome to use. Specifically, in Scheme A, w is discontinuous

unless the Jf field is symmetric (where J is the Jacobian of the transformation x ¼ xðx; ZÞ), whereas, in Scheme B, w is

discontinuous unless the Jf field is antisymmetric (that is, unless the flow field is symmetric). A third approach that

eliminates these problems was proposed in Morino and Bernardini (2002) (see Scheme C in Section 3.2). This will

referred to as Scheme C and consists of dividing the field Jf into two contributions that are, respectively, symmetric and

antisymmetric with respect to the coordinate Z. Then, for the symmetric portion of Jf, w is obtained using Scheme A,

that is, by integrating along the x-direction, whereas for the antisymmetric portion, w is obtained using Scheme B, that

is, by integrating along the Z-direction. The resulting vortical velocity field w is continuous, thereby eliminating

discontinuities also in the potential velocity, rj. This paper presents the first numerical results for the validation of

Scheme C, with applications to aerodynamics and aeroelasticity (Section 4).

However, as mentioned above, the main novelty in the present paper is in the approach used to impose the body

boundary condition. In order to cast this issue in the proper perspective, recall that in all the non-primitive variable

formulations, the boundary condition is imposed by expressing the velocity at the boundary (or inside the boundary) in

terms of the vorticity distribution (in the field and on the boundary); then, imposing the no-slip condition one obtains

the values of the vorticity at the boundary. The various approaches available differ by the velocity–vorticity relationship

used [see, for instance, Wu (1976), Morino (1985, 1990), Quartapelle (1993), Guj and Stella (1993), Cossu (1997), and

Cossu and Morino (1997)].
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It may be noted that in the last two formulations, a single velocity–vorticity relationship, that based upon the

Biot–Savart law [which arises from the Helmholtz decomposition, see Morino (1985)], is used for the evaluation of both

the velocity in the field and that at the boundary (i.e., for imposing the no-slip condition). In other words, the

evaluation of the velocity in the field and the no-slip boundary condition are mutually consistent. A consistent approach

is also used in the above-mentioned implementations of Scheme A (Morino and Beauchamp, 1988; Beauchamp, 1990).

On the contrary, in the implementations of Scheme B (Arsuffi et al., 2001; Morino et al., 2003), there is an inconsistency

between the approach used to evaluate the velocity in the field and that for the no-slip boundary condition. Specifically,

Scheme B (that is, Eq. (1), with w given by Eq. (13)) is used only for evaluating the velocity in the field, whereas the

Biot–Savart implementation of Cossu (1997) is utilized for the no-slip condition.

In Arsuffi et al. (2001) and Morino et al. (2003), such an approach is indicated, as ‘‘very preliminary’’ and to be

replaced by an approach in which the algorithm utilized for the boundary condition is consistent with that used to

evaluate the velocity in the field. Such an approach is employed here: the direct integration algorithm is used for both,

the evaluation of the velocity in the field and the implementation of the no-slip boundary condition.

It should be emphasized that, as pointed out by Wu (1976) and addressed in details by Cossu and Morino (1997), for

two-dimensional flows the system of equations that yields the nodal values of the boundary vorticity is singular and

hence an additional condition must be imposed: the conservation of the total vorticity which stems from the Stokes and

Kelvin theorems (since the vorticity vanishes exponentially at infinity)

d

dt

ZZ
R2

zdA ¼
d

dt

ZZ
AF

zdAþ 2
dO
dt

AS ¼ 0, (4)

where we have used R2 ¼AF [AS, withAF andAS denoting, respectively, the fluid and the solid regions (the latter is

assumed for simplicity to be rigid), whereas O ¼ 1
2
z is the angular velocity of the body.

Finally, in past implementations, the computational domain is limited to a region relatively close to the solid body.

Hence, imposing the total-vorticity conservation requires the evaluation of the amount of vorticity that leaves the

computational domain. This implies that inaccuracies in the evaluation of the vorticity that leaves the computational

domain affect the amount of vorticity generated at the boundary. For this reason, the total-vorticity-conservation

condition is here replaced by an equivalent one that does not require the evaluation of the vorticity leaving the

computational domain. This is the most interesting novel theoretical contribution of the present paper and is addressed

in Section 3.4.
3. Theoretical formulation and numerical implementation

As mentioned above, the ultimate goal of the present work is the analysis of three-dimensional unsteady compressible

viscous flows and the present paper should be seen just as a very first (although crucial) step towards that direction.

Specifically, the numerical applications presented here are limited to two-dimensional incompressible flows. For this

reason the formulation presented in the main body of the paper is limited to two-dimensional incompressible flows (the

extension to three-dimensional compressible flows is briefly addressed in Appendix A, simply to convey to the reader

the full potentiality of the proposed approach).

Consider a two-dimensional incompressible flow past a solid body having arbitrary shape and arbitrary motion. The

governing equations are the continuity equation

r � v ¼ 0 ðx 2AF Þ (5)

and the Navier–Stokes equations. These, using the dimensionless variables v ¼ �v=U1, p ¼ �p=rU2
1, x ¼ �x=‘ and t ¼

U1 �t=‘ (where U1 is the undisturbed velocity, ‘ is a suitable reference length, and r is the density, whereas � denotes
physical variables), are given by

Dv

Dt
:¼
@v

@t
þ ðv � rÞv ¼ �rpþ

1

Re
r2v ðx 2AF Þ, (6)

with Re denoting the Reynolds number: Re ¼ U1‘=n, where n is the kinematic viscosity coefficient.

To complete the problem, we need the boundary conditions on the contour of the body, CB,

v ¼ vB ðx 2 CBÞ, (7)
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and those at infinity, which in a frame of reference rigidly connected with the undisturbed fluid (undisturbed-fluid frame

of reference) are given by (Kress, 1989)

v ¼ oðkxk�1Þ and p� p1 ¼ oð1Þ ðas kxk�!1Þ (8)

(where, for any a and b, a ¼ oðbÞ means that a=b tends to zero). In addition, we have the initial condition; assuming to

start from rest, this is2

vðx; 0Þ ¼ 0. (9)

The solution of these equations through the use of Eq. (1) requires the solution of four separate problems: (i) the

evaluation of the vorticity z in the field, (ii) the evaluation of the vortical velocity w from z, (iii) the evaluation of the

potential j, (iv) the evaluation of z at the boundary.

3.1. Evaluation of the vorticity in the field

The first problem requires simply the solution of the two-dimensional vorticity transport equation. This is obtained

as the curl of the Navier–Stokes equations, Eq. (6), and, for two-dimensional flows, is given by

Dz
Dt
:¼
@z
@t
þ v � rz ¼

1

Re
r2z. (10)

This equation is spatially discretized by central finite differences (with the Laplacian represented by its standard tensor-

analysis expression for curvilinear non-orthogonal coordinates). For the time integration, the (inefficient, but

convenient) explicit Euler scheme is used.

3.2. Evaluation of w

Eq. (10) requires the availability of the values of the velocity only at the field nodes, where the discretized form of

Eq. (10) is being used to evaluate the vorticity. As a consequence, the evaluation of the velocity is to be performed only

in the vortical region.

In this subsection, we consider the formulation for the vortical contribution w (j is considered in the next

subsection). In a two-dimensional flow, Eq. (2) yields only one non-zero component, that is,

Jz ¼
@w2

@x
�
@w1

@Z
, (11)

where z is the (two-dimensional) vorticity, whereas w1 and w2 are the covariant components of w. This equation may be

solved by assuming—arbitrarily but legitimately (Morino, 1990)—one of the two covariant components of w to vanish,

and by integrating Eq. (11) in a suitable direction (the same holds true for three-dimensional flows, see Eq. (A.4)). The

three schemes outlined in Section 2 are illustrated in detail in the following.

Scheme A: The first scheme (Morino and Beauchamp, 1988; Beauchamp, 1990; Morino, 1990) consists of choosing

w1ðx; ZÞ ¼ 0. Hence, integrating Eq. (11) yields

w1ðx; ZÞ ¼ 0; w2ðx; ZÞ ¼ �
Z 1
x

Jð�x; ZÞzð�x; ZÞd�x. (12)

The most important consequence of this last equation—key to the formulation—is that the vortical velocity

contribution w vanishes in much of the irrotational region. Specifically, given an arbitrary point x, we have that

wðxÞ ¼ 0, if z ¼ 0 for all the points on the Z-line between x and infinity (that is, in much of, if not all, the irrotational

region, given the above choice of the coordinates x and Z). It is easy to verify that this approach yields a normal

discontinuity for w across the mid-wake line LW , unless Jz is symmetric with respect to Z [see Morino and Bernardini

(2002)]. Therefore, the formulation is cumbersome to use in practical applications.
2In general, one may assume that vðx; 0Þ ¼ v0ðxÞ, provided that the total vorticity (including that of the solid region) is initially zero,

so as to have that the potential j is single-valued at all times (this may be seen from the Kelvin theorem applied to a contour that

surrounds the vortical region).
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Scheme B: The second scheme (Morino et al., 1999, 2003) consists of choosing w2ðx; ZÞ ¼ 0. Hence, integrating

Eq. (11) yields

w1ðx; ZÞ ¼
Z 1
Z

Jðx; �ZÞzðx; �ZÞd�Z; w2ðx; ZÞ ¼ 0. (13)

Again, we have w ¼ 0 in much of (if not all) the irrotational region. It is also easy to verify that the use of this scheme

yields a tangential discontinuity for w across the mid-wake line LW , unless Jz is antisymmetric with respect to the Z-
direction [as in the case of symmetric flows; see again Morino and Bernardini (2002)]. Therefore, the formulation is

cumbersome to use in practical applications, except for the case of symmetric flows.

Scheme C: As mentioned above, the remedy used here consists of decomposing the field Jz into two contributions,

one symmetric and the other one antisymmetric with respect to the variable Z, and to use Scheme A for the symmetric

contribution and Scheme B for the antisymmetric one. This procedure eliminates any w discontinuity across the mid-

wake lineLW [it may be noted that the same considerations apply for the three-dimensional case; see again Morino and

Bernardini (2002)].

In all three schemes, the integral in Eq. (12) and/or (13) is performed by using the Simpson rule.
3.3. Evaluation of j

Next, consider the formulation for the potential contribution introduced by Eq. (1). Combining the incompressible-

flow continuity equation, Eq. (5), with the expression for the velocity, Eq. (1), yields

r2j ¼ Y ðx 2AF Þ, (14)

where Y:¼�r � w.
Next, consider the boundary condition for j on the boundary contour CB. Dotting Eq. (7) with the outer normal to

CB, n, one obtains v � n ¼ vB � n for x 2 CB. Then, using Eq. (1), we have

@j
@n
¼ w� w � n ðx 2 CBÞ, (15)

where w:¼vB � n. In addition, in a frame of reference connected with the undisturbed fluid, we have j ¼ oð1Þ at infinity.3

Recalling that, in Scheme C proposed here, w is continuous by construction, we have that rj is also continuous

everywhere in the field, and so is j, since, as mentioned in footnote 2, here j is single-valued. Thus, the boundary

integral representation for the Poisson equation, Eq. (14), with the above boundary condition at infinity, is given by

jðxÞ ¼
I

CB

@j
@n

G � j
@G

@n

� �
dsðyÞ þ

ZZ
Aw

GYdAðyÞ, (16)

with Aw denoting the region where wa0, whereas G ¼ ln kx� yk=2p and @=@n ¼ ry � nðyÞ (ry denotes that we are

taking the gradient with respect to y). Eq. (16) allows one to evaluate j everywhere in the field, if j and @j=@n over CB

and Y in Aw are known.

However, only @j=@n is prescribed by the boundary conditions, Eq. (15). Therefore, we need an equation to evaluate

j on CB. With this in mind, note that, in the limit, as x tends to CB, Eq. (16) yields a compatibility condition between j
and @j=@n on CB and Y in Aw. In our case, this compatibility condition corresponds to an integral equation, which

allows one to evaluate j on CB, provided that @j=@n on CB and Y in Aw are known (Morino, 2003).

Note that, following Beauchamp (1990), one may perform an integration by parts on the field integral, and obtain

jðxÞ ¼
I

CB

wG � j
@G

@n

� �
dsðyÞ þ

ZZ
Aw

rG � wdAðyÞ, (17)

which shows that the contribution from w (and hence z) may be expressed in terms of a doublet distribution in Aw, in

the direction of w and intensity kwk. In the limit as the wake thickness tends to zero, this yields the standard

formulation for quasi-potential flows with a doublet-layer wake (Morino, 1990).
3For the Laplace equation, this requires
H
CB
ð@j=@nÞds ¼ 0 (Kress, 1989) (see Eq. (16), where G ¼ ln r=2p tends to infinity as

kxk !1). For rigid bodies, we have
H
CB
wds ¼ 0. The question is then—do we have to impose

H
CB
w � n ds ¼ 0 as well? The answer is:

no. The reason is that here, instead of the Laplace equation, we have the Poisson equation, Eq. (14), with Y:¼�r � w. This yields a
compensation between the line source integral and the field integral, with the result that, as kxk ! 1, j tends indeed to zero, as

apparent from Eq. (17).
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In the numerical applications, in order to avoid singularities, Eq. (17) is discretized by using a piecewise cubic scheme

(Hermite interpolation) on CB, whereas in the field a piecewise linear scheme is used.

3.4. Evaluation of the vorticity at the boundary

Finally, consider the evaluation of the vorticity at the body-boundary nodes. The procedure presented here is the

main theoretical novelty introduced in this paper.

As for any vorticity-based method, a problem arises for the vorticity boundary condition. This condition is not

directly available, whereas available is the condition on the velocity, Eq. (7). Therefore, in order to obtain the desired

condition for the vorticity at the boundary, it is necessary to express the velocity boundary condition in Eq. (7) in terms

of z. As mentioned above, in Arsuffi et al. (2001) and Morino et al. (2003), this problem has been approached by using

the implementation of Cossu (1997) of the Biot–Savart law. However, this approach confers a hybrid aspect to the

formulation—that is, the direct-integration approach is used to evaluate w in the field and the Biot–Savart law on the

boundary.

On the contrary, the formulation used here to impose the boundary condition is the same as that utilized to evaluate

the velocity in the field (Section 3.2). Given the future objective (compressible flows), this is a key validation point

because the Biot–Savart law is valid only for incompressible flows.

In order to discuss this formulation, note that—were the vorticity completely known—the velocity would be known

except for the potential contribution, Eq. (1), and hence only one boundary condition would have to be imposed [see,

for instance, Batchelor (1967, pp. 87 and 104)]. Hence, we may impose Eq. (15).4

However, in our case, the vorticity is not completely known, since the vorticity at the boundary is still to be

determined. Hence, a deeper analysis is needed. For the sake of clarity, consider first symmetric flows. Then, given

@j=@n from Eq. (15) and Y in the field, the integral equation for j, obtained from Eq. (16) as x tends to CB, yields a

velocity distribution that does not necessarily satisfy the no-slip condition

ðrjþ w� vBÞ � t ¼ 0, (18)

where t denotes the tangential unit vector on CB. The reason for this is that an arbitrary vorticity distribution does not

necessarily correspond to a velocity field that satisfies the no-slip condition.

The standard interpretation of the term ðrjþ w� vBÞ � t is that of a velocity discontinuity between the fluid and the

solid region. However, in our case, it is convenient to adopt the following point of view: there exists a zero-thickness

vortex layer of intensity

g ¼ ðrjþ w� vBÞ � t, (19)

and this vortex layer—although adjacent to CB—is fully contained in the flow field (Morino, 1986, 1990).

In the approach used in Morino and Beauchamp (1988), Beauchamp (1990) and Morino (1990) this layer

immediately diffuses, thereby yielding that the no-slip condition is automatically satisfied (for, if it was not, there would

be a zero-thickness vortex layer).5 This approach is adopted here.

Next, consider non-symmetric flows. The algorithm proposed for symmetric flows is not applicable to non-symmetric

(lifting) flows, because, in this case, the total vorticity generated over the boundary ought to be, in general, different

from zero, whereas, with the above approach, we have thatI
CB

gds ¼

I
CB

rj � dxþ
I

CB

w � dx�

I
CB

vB � dx ¼ 0. (20)

Indeed, the first term vanishes, sinceI
CB

rj � dx ¼
I

CB

dj ¼ 0, (21)
4The formulation discussed here is for two-dimensional problems. However, similar results hold for three-dimensional flows as well.

It should be noted that, for the three-dimensional case, there exists an issue which is rarely addressed in the literature: the unknown

vorticity on the boundary consists of a thin vortex layer that is solenoidal and therefore depends upon a single scalar distribution over

the boundary surface. Hence, it is sufficient (and appropriate) to use the normal boundary condition to obtain the solution [for a

deeper analysis of this subtle point, the reader is referred to Morino (1990)].
5In other words, here vorticity generation and diffusion are treated as independent process (as in ‘‘operator splitting’’). On the

contrary, in formulations based on the Helmholtz decomposition [such as Wu (1976), Cossu (1997), and Cossu and Morino (1997,

1999)] one deals with a layer of distributed vorticity (that is, the process of vorticity generation and diffusion are considered to be

simultaneous).
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because, as mentioned above, in the present formulation j is single-valued. In addition, the contour integral of w

vanishes; for, dx ¼ g1 dx and hence w � dx ¼ w1 dx, where w1 ¼ 0 for the symmetric portion of Jz, whereas, for the

antisymmetric one, it is the contour integral that vanishes. Finally, the last term vanishes, because vB is independent

from x, whereas
H
CB
dx ¼ 0.

The remedy is provided by the fact that the total vorticity must remain constant, as indicated explicitly in Eq. (4).

Specifically, as mentioned above, in viscous flows the vortex layer generated on the body contour is convected and

diffused in the fluid field. This requires that we introduce suitable changes in the vorticity at the boundary, so that the

total vorticity remains constant, in agreement with Eq. (4).

In Cossu (1997), this condition is imposed through an evaluation of the ‘‘outgoing vorticity’’ (that is, the vorticity

that leaves the computational domain through the outer boundary). This approach makes the scheme highly sensitive:

indeed, small errors in the evaluation of the outgoing vorticity may pile up, over time, and alter the vorticity

generated—at every time step—at the inner boundary; this in turn requires that the evaluation of the outgoing vorticity

must be very accurate—not an easy task, since the outer boundary is where we have the lowest computational accuracy,

because of the coarseness of the computational grid there.

The novel approach proposed here for overcoming this drawback is based upon the evaluation of the vorticity flux

from the body to the field through a contour C� that is close to the inner boundary. Such a flux must be compensated

for by an opposite variation of the vorticity on the boundary.

In order to clarify this issue and obtain an explicit expression for the vorticity to be added on CB [and show the

equivalence to the formulation of Cossu (1997)], let us divide the fluid region into two parts, one inside and the other

outside the contour C�, denoted, respectively, by AI
F and AE

F , so that AF ¼AI
F [A

E
F . Using the Leibniz theorem for

an integral with moving boundaries, as well as the vorticity transport equation, Eq. (10), and the continuity equation,

r � v ¼ 0, one obtains

d

dt

ZZ
AE

F

zdA ¼
ZZ

AE
F

@z
@t

dA�

I
C�

zv� � nds ¼

ZZ
AE

F

Dz
Dt

dA�

I
C�

zðv� � vÞ � nds

¼ �

I
C�

n
@z
@n
þ zðv� � vÞ � n

� �
ds, (22)

where v� is the velocity of a point of the contour C�, whereas n points from AI
F to AE

F . Eq. (22) allows one to evaluate the

total vorticity variation in the fluid region external to C�. Recalling now Eq. (4) and that AF ¼AI
F [A

E
F , we have finally

d

dt

ZZ
AI

F

zdA ¼
I

C�

n
@z
@n
þ ðv� � vÞ � nz

� �
ds� 2

dO
dt

AS. (23)

Eq. (23) represents the time-variation of the total vorticity inside C�. Of course, as apparent from the derivation above,

this is completely equivalent to imposing the total vorticity conservation, Eq. (4), since this was used in the derivation of

Eq. (23). In the computational implementation, we choose for C� to be defined by the equation Z ¼ 1
2
Z1, where Z1 is the

value of Z corresponding to the first set of field nodes away from the body boundary (in other words, C� is located

between the boundary and the first set of nodes). Then, Eq. (23) yields the total vorticity to be added in the region AI
F .

This vorticity may be distributed arbitrarily among the various boundary nodes, because the arbitrariness is

subsequently compensated for by the vorticity distribution obtained from Eq. (19).

A second-order scheme is used for the spatial discretization of Eq. (23).
4. Validation

In view of the novelty of the scheme, it is necessary to validate and assess the accuracy and the efficiency of the

algorithm. To this aim, we considered first steady incompressible two-dimensional flows and compared the results

against data either available in the literature, or obtained using commercial codes (Section 4.1). Second, we considered

unsteady incompressible flows, specifically, the transient response of the flow around a circular cylinder subject to an

impulsive start (Section 4.2).

Next note that, in the case of unsteady phenomena, two aspects should be kept in mind: (i) it is possible that the

numerical scheme introduces instabilities that are not present in the original operator—this is typically referred to as the

‘‘numerical-instability’’ problem; and (ii) it is also possible that the numerical scheme introduces damping—this is

typically referred to as the ‘‘artificial-damping’’ problem. The unsteady aerodynamic analysis validates the first issue

(the numerical-instability problem), but not the second one (the artificial-damping problem). This second issue is

particularly important in fluid–solid interaction, because a physical instability might be camouflaged by the artificial
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damping introduced by the numerical scheme. Thus, third, the validation includes an aeroelastic analysis in the

neighborhood of the flutter boundary (Section 4.3). A conformal-mapping C-grid (Ives, 1982) is used for all the results.
4.1. Steady aerodynamics

In order to validate the formulation for steady incompressible flows, we considered, as test cases, a circular cylinder,

as well as an airfoil in a uniform flow.

The first test case considered is a circular cylinder (having diameter D) in a uniform flow, for which extensive results

are available. In Figs. 1–3, the numerical results obtained are compared to those available in the literature. Specifically,

Fig. 1 depicts the dimensionless length of the recirculation bubble (that is, the distance of the singular point from the

cylinder, along the x-axis), as a function of Re:¼U1D=n. The present results are in good agreement with the numerical

results of Dennis and Chang (1970), Fornberg (1980) and Cossu (1997) and to a lesser extent with those of Noack and

Eckelmann (1994). Fig. 2 depicts the separation-point angle as a function of the Reynolds number. Our results are

compared with the experimental ones by Thom (1933) and Grove et al. (1964), and the numerical ones by Cossu (1997),

which are obtained by using the Biot–Savart law. Again, the agreement is satisfactory.6 Fig. 3 depicts the vorticity
6It may be added that the numerical results by Fornberg (1980) and Dennis and Chang (1970), not shown in the figure for the sake of

clarity, are quite close to those by Cossu (1997).
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distribution along the cylinder boundary for Re ¼ 16:712 (y ¼ 0� corresponds to the downstream point). Note that the

symmetry of the flow is correctly captured. The results are compared to the only ones found in the literature [i.e., Cossu

(1997) and Cossu and Morino (1997)]. The agreement is quite good; the present results are obtained by using a C-grid

with 100 elements in the x-direction (20 elements on either side of the body, 30 along the wake) and 20 elements in theZ-
direction; on the other hand, those of Cossu (1997) are obtained by using an O-grid with 80 elements in the x-direction
and 40 in the (radial) Z-direction.
The second test case considered is a symmetric Joukowski airfoil in a uniform flow. An airfoil at zero angle of attack

does not provide a good test for Scheme C (because in this case the flow is symmetric, and hence Scheme C reduces to

Scheme B). Thus, the test case used is that of an airfoil (having chord c) at an angle of attack a ¼ 3�, with

Re:¼U1c=n ¼ 40. A C-grid is used, with—on each side—60 elements in the x-direction (30 elements on each side of the

airfoil) and 30 in the Z-direction. Figs. 4 and 5 show a comparison between the present results and those obtained by the

authors, by using the Biot–Savart law formulation that was presented in Cossu and Morino (1997). Specifically, Fig. 4

depicts z ¼ zð0:25; ZÞ, as a function of Z (quarter-chord vorticity profile). Furthermore, Fig. 5 depicts the velocity

covariant component, v1ð0:25; ZÞ, as a function of Z (quarter-chord profile of v1). In addition, Figs. 6 and 7 show a

comparison between the present results and those obtained by the authors, by using the commercial code Fluent 5.5

(1999) (the results obtained by the authors with the Biot–Savart law formulation are not shown, since they are

identical—within plotting accuracy—to the present ones). Specifically, Fig. 6 depicts the pressure coefficient along the

airfoil boundary, Eq. (A.1) whereas Fig. 7 presents the vorticity distribution also along the airfoil boundary. In both
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Table 1

Comparison of results obtained by the present work with those obtained numerically with Fluent 5.5.

Cl Cd Cmo

Present work 0.1477 0.72266 �0.0413

Fluent 5.5 0.1635 0.72070 �0.0453
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Fig. 8. Impulsive start: wall vorticity at t ¼ 0:15, for Re ¼ 500.
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cases, the agreement is remarkably good, especially those regarding the vorticity distribution. In addition, Table 1

shows the comparison in terms of aerodynamic coefficients between the present results and those obtained by the

authors, again by using Fluent 5.5 (1999). The forces are obtained by integrating both the shear stress and the pressure

distributions along the body contour

f ¼

I
CB

ð�pnþ ttÞds, (24)

where t ¼ mz, whereas p is obtained by using again Eq. (A.1). The agreement is quite satisfactory, although—strangely

enough—not as much as the non-integrated data. Further analysis of this issue is deemed desirable.
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4.2. Unsteady aerodynamics

In order to validate the formulation for unsteady aerodynamics, we considered the problem of an impulsive start of a

circular cylinder, for Re ¼ 500. The results obtained are presented in Figs. 8 and 9, which depict—for dimensionless

time t ¼ U1 �t=D ¼ 0:15 and t ¼ 0:50, respectively—the distribution of the vorticity z along the contour of the cylinder

(that is, as a function of the angle y, with y ¼ 0� identifying the downstream point of the cylinder). Note that, because of

the symmetry of the flow, the vorticity is an antisymmetric function of y. The results obtained by Son and Hanratty

(1969) and by Panikker and Lavan (1975) are also shown in Figs. 8 and 9. The comparison is quite satisfactory—the

differences between the three methods are of the same order of magnitude.
4.3. Flutter

As mentioned above, in order to make sure that the numerical scheme (which is stable, as implicitly validated in the

preceding subsection) does not introduce artificial damping, it is convenient to consider a validation based upon a

fluid–solid interaction that includes an estimate of the instability boundary. Thus, an aeroelastic (flutter) analysis has

been performed. The physical model examined consists of a rigid spring-dashpot-mounted cylinder, in a uniform

incompressible flow having undisturbed velocity U1i. The only degree of freedom of the cylinder is in the direction

orthogonal to the undisturbed flow. The mathematical model is presented in Section 4.3.1, the numerical results in

Section 4.3.2.
4.3.1. Aeroelastic model

The equation governing the motion of a rigid cylinder having a single elastic degree of freedom, subject to a spring-

dashpot force and the fluid pressure, is given by [see, for instance, Belvins (1991)]

d2y

dt2
þ g

dy

dt
þ o2

Cy ¼
k
p

cL, (25)

where t ¼ U1 �t=D is the dimensionless time and y ¼ �y=D is the dimensionless displacement of the cylinder, whereas oC

is the dimensionless structural natural frequency, g the dimensionless damping coefficient of the cylinder, k ¼ rF=rC the

fluid/solid density ratio, and cL ¼ L=1
2
rF U2

1D the cylinder lift coefficient per unit length. The lift is evaluated using

Eq. (24).

The Newmark (1959)-b method is used for the numerical integration of Eq. (25).
4.3.2. Numerical results

The simulations assume that, for negative times, the cylinder is at rest, surrounded by a steady-state viscous flow

(numerically, this steady state is obtained through a transient with the cylinder held fixed). At time t ¼ 0, a sudden

impulse is applied to the cylinder, so that, at t ¼ 0þ, we have y ¼ 0, but v ¼ dy=dt ¼ 0:035 [as in Cossu and Morino
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 2.5 5 7.5 10 12.5 15 17.5
t

y(t)

v(t)

Fig. 10. Displacement and velocity versus t, for Re ¼ 23:512, k ¼ 1
7
, g ¼ 0:01, oC ¼ 4:88.



ARTICLE IN PRESS

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 2.5 5 7.5 10 12.5 15 17.5
t

y(t)

v(t)

Fig. 11. Displacement and velocity versus t, for Re ¼ 23:512, k ¼ 1
70
, g ¼ 0:01, oC ¼ 4:88.

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 2.5 5 7.5 10 12.5 15 17.5
t

y(t)

v(t)

Fig. 12. Displacement and velocity versus t, for Re ¼ 23:512, k ¼ 1
7000

, g ¼ 0:01, oC ¼ 4:88.

L. Morino et al. / Journal of Fluids and Structures 25 (2009) 1282–1298 1295
(1999)]. For comparison, the same values used by Cossu and Morino (1999) were assumed for Re, oC , and g (that is,

Re ¼ 23:512, oC ¼ 4:88, and g ¼ 0:01). The transient responses are shown in Figs. 10–12, respectively, for k ¼ 1
7
, 1
70
, 1
7000

.

The first case is definitely unstable, the third is definitely stable, the second is near the stability boundary. For this last

case, further analysis was performed. Specifically, for the case k ¼ 1
70
, we estimated the logarithmic decrement and the

oscillation period of the response, thereby obtaining the real and imaginary parts of the critical pole, respectively,

a ¼ 3:7� 10�2 and o ¼ 0:663 (of course this presumes that the unsteady part of the solution is close to that of a linear

operator; this is true here because the amplitude of oscillation is small). Both of these values are in excellent agreement

with the values reported in Cossu and Morino (1999), a ¼ 3:803� 10�2 and o ¼ 0:660 (obtained via an eigenvalue

analysis of the equations linearized around the steady-state solution).
5. Concluding remarks

A convenient decomposition for the analysis of viscous flows has been presented. This falls within the vast class of

potential/vorticity decomposition of the type v ¼ rjþ w, which includes the classical Helmholtz decomposition as a

particular case. A distinguishing feature of the present decomposition is that the vortical velocity contribution w

(obtained by a line integration along a suitable path) vanishes in much of the irrotational region. As a consequence, in
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much of the irrotational region one obtains v ¼ rj. The paper presents three novelties with respect to preceding work

by the authors and their collaborators.

The first novelty is an implementation and assessment of the formulation by Morino and Bernardini (2002), where

the rotational velocity is obtained by separating the field Jz into two contributions that are symmetric and

antisymmetric with respect to the coordinate Z, normal to the body and the mid-wake line (then, in evaluating w, the

most convenient direction of integration is chosen for each of the two contributions, as discussed in Section 3.2).

The advantage of this approach is that the rotational velocity field (and hence the potential one) is continuous across

the wake, thereby facilitating the numerical implementation. The computational results obtained indicate that the

accuracy of the formulation is superior to that of earlier approaches (Schemes A and B) and that the implementation

does not present any of the cumbersome aspects of either scheme.

The second novelty introduced here is in the formulation of the boundary conditions, where we use the same

velocity–vorticity formulation for both evaluating the field velocity and imposing the boundary conditions (in preceding

works, a hybrid, very preliminary, approach was used, with the Biot–Savart law employed for imposing the boundary

conditions). Again, the assessment is very satisfactory in terms of accuracy and the resulting formulation is self-

consistent—as already pointed out, this is an essential item of the validation, given the ultimate objective of the work,

since the use of the Biot–Savart law for compressible flows is cumbersome.

As a third novelty, the condition of constant total vorticity is replaced by an equivalent one that does not require the

evaluation of the vorticity that leaves the computational domain (see Section 3.4). This novelty as well yields a

considerable streamlining of the scheme, since the wake region may be reduced considerably without loss of accuracy,

because the total vorticity in the field is no longer evaluated in the new scheme.

In addition, numerical results have been presented. These include analyses of: (i) steady aerodynamics, (ii) unsteady

aerodynamics, and (iii) flutter. These analyses allowed us to verify also the absence of both numerical instabilities and

artificial damping. The results are in good agreement with existing data, thereby providing a satisfactory, albeit

preliminary, validation of the formulation.

Further work deemed necessary includes convergence analyses and, ultimately, the implementation and validation of

the formulation for three-dimensional compressible flows, which is outlined in Appendix A.
Appendix A. Three-dimensional compressible formulation

In this appendix the formulation for the case of compressible viscous flows is addressed; for details, see Morino

(2003). Assuming the body forces and the heat sources to be negligible, the governing equations are (Serrin, 1959) the

continuity equation Dr=Dtþ rr � v ¼ 0, the Navier–Stokes equations, rDv=Dt ¼ �rpþ divV (where V is the viscous-

stress tensor), and the entropy transport equation, rTDS=Dt ¼ V : D� r � q (where T is the temperature of the fluid,

D the strain rate tensor, and q the heat flux vector). In addition, recall that dh ¼ TdS þ dp=r, where h denotes the

enthalpy, and hence, rp=r ¼ rh� TrS. Next, combining the last equation with the Navier–Stokes equations, and

recalling the expression for the acceleration, Dv=Dt ¼ @v=@tþ 1
2
rv2 þ f� v, yields a generalized Bernoulli theorem

introduced by Morino (1985):

_jþ
v2

2
þ hþ l ¼ h1, (A.1)

where lðxÞ ¼
R x
1
rðyÞ � dy, with r ¼ @w=@tþ f� v� TrS �DivV=r, where the integral is path independent.

Next, consider the equation for the potential j. Combining the continuity equation with Eqs. (1) and (A.1), and the

equation of state r ¼ rðh;SÞ, one obtains

r2j�
1

a21

@2j
@t2
¼ s, (A.2)

where s includes all the terms due to the presence of the vorticity and viscosity, as well as the nonlinear terms in the

potential-flow formulation (Morino, 2003).

The solution of Eq. (A.2) may be obtained using a standard boundary element method [see, in particular, Morino

(2003)]. In this case, it is apparent that: (i) it is desirable to have w ¼ 0, as much as possible, in the irrotational region, so

as to reduce the volume of integration, and (ii) avoid discontinuities for w, so as to have rj and j continuous as well,

thereby eliminating the surface integral over the mid-wake surface.
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This may be accomplished as follows. Introduce suitable curvilinear coordinates, xa, and the transformation

x ¼ xðxa; tÞ, invertible everywhere. Eq. (2), in curvilinear coordinates, reads

Jz1 ¼
@w3

@x2
�
@w2

@x3
; Jz2 ¼

@w1

@x3
�
@w3

@x1
; Jz3 ¼

@w2

@x1
�
@w1

@x2
, (A.3)

where J is the Jacobian of the transformation x ¼ xðxa; tÞ. Next, choose, arbitrarily w1 ¼ 0.7 Then, integrating Eq. (A.3)

along a x1-line, one obtains

w1ðx
1; x2; x3Þ ¼ 0,

w2ðx
1; x2; x3Þ ¼ �

Z 1
x1

Jz3ðx̂
1
; x2; x3Þdx̂

1
,

w3ðx
1; x2; x3Þ ¼

Z 1
x1

Jz2ðx̂
1
; x2; x3Þdx̂

1
. (A.4)

The considerations presented in the main body of the paper—regarding the direction of integration (Scheme C) and the

numerical implementation—apply to this case as well.
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